Acta Crystallographica Section E

Structure Reports Online

catena-Poly[[[aqua(2,2'-bipyridine)copper(II)]-μ-3-sulfonatobenzoato] monohydrate]

ISSN 1600-5368

Xiao-He Miao, ${ }^{\text {a }}$ Hong-Ping Xiao ${ }^{\text {b }}$ and Long-Guan Zhu ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.032$
$w R$ factor $=0.085$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

In the title polymeric complex, $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right.\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, each Cu atom is coordinated by a water molecule, two 3-sulfonatobenzoate ligands and two N atoms from one $2,2^{\prime}$-bipyridine molecule, in the shape of a square pyramid. The bridging 3 -sulfonatobenzoate ligands extend the molecular structure into a one-dimensional chain. The coordinated water molecule forms an intramolecular hydrogen bond with the carboxyl group and an intermolecular hydrogen bond with the solvent water molecule. The extensive hydrogen-bonding network between the sulfonate groups and the solvent water molecules of two polymer chains generates ring structures, which form an infinite ladder-like pattern extending along the a axis.

Comment

In recent years, numerous metal complexes with ditopic ligands, such as 1,4-benzenedicarboxylate (bdc) or 4,4'bipyridine, have been extensively investigated owing to their potential application as functional materials (Chisholm, 2003; Yaghi et al., 2003; Zhu \& Kitagawa, 2002). However, metal complexes with sulfobenzoate, a ligand with a combination of sulfonate and carboxylate groups, are sparse (Zhang \& Zhu, 2005). In the related reaction system of 4 -sulfobenzoate (4-sb), copper(II), 2,2'-bipyridine ($2,2^{\prime}$-bipy) and water, a dimer structure is formed (Fan et al., 2004). In the title complex, (I), using 3 -sulfobenzoate (3-sb) instead of 4 -sulfobenzoate, a polymeric species is formed.

Received 24 October 2005 Accepted 3 November 2005 Online 10 November 2005

Figure 1
ORTEP-3 (Farrugia, 1997) view of a segment of (I). Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) $-1+x, y, z$.]

Figure 2
A view of the one-dimensional chain of (I). H atoms and solvent water molecules have been omitted for clarity. Hydrogen bonds are shown as dashed lines.

O (carboxylate), $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}\left(\mathrm{SO}_{3}{ }^{-}\right)$distances in (I) are remarkably close to those in (II), and the $\mathrm{Cu}-\mathrm{O}$ (carboxylate) and $\mathrm{Cu}-\mathrm{N}$ distances in (I) are also similar to those in reported one-dimensional bdc/1,10-phen $/ \mathrm{Cu}^{2+}$ complexes, such as $[\mathrm{Cu}(\mathrm{bdc})(\mathrm{phen})]$ (Sun et al., 2001), $\left[\mathrm{Cu}_{2}(\mathrm{bdc})(\mathrm{phen})_{2}\left(\mathrm{~N}_{3}\right)_{2}\right](\mathrm{Li}$ et al., 2001) and $\left[\mathrm{Cu}(\mathrm{bdc})(\right.$ phen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{DMF})(\mathrm{Zhu}$ et al., 2004). The 3-sb ligand in (I) acts as a bridge in the bismonodentate coordination mode and the $\mathrm{Cu} \cdots \mathrm{Cu}$ separation by the 3 -sb ligand is 9.5843 (5) \AA, which is slightly shorter than that of (II) $[9.7495$ (8) \AA] and significantly shorter than those of reported one-dimensional bdc/1,10-phen/ Cu^{2+} complexes (about $11.0 \AA$). The dihedral angle between the planes of the 3 -sb ring and its carboxylate group is 12.1 (3) ${ }^{\circ}$, which is larger than that of (II) $\left[4.0(4)^{\circ}\right]$. In (II), the two cis-arranged 4 -sb ligands around the Cu atom are strictly parallel and lead to a cyclic dimer. However, in (I), the two 3-sb ligands around the copper centre are arranged in a trans fashion, and a onedimensional chain is formed (Fig. 2), including an intramolecular hydrogen bond between the coordinated water molecule and the uncoordinated carboxyl O atom. The solvent water molecule forms three hydrogen bonds with the coordinated water molecule and two sulfonate groups from two neighbouring chains, and thus the molecular structure is assembled into a ladder-like pattern (Fig. 3 and Table 2), in which the shortest $\mathrm{Cu} \cdots \mathrm{Cu}$ separation is 6.9967 (6) \AA.

Experimental

A mixture of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.093 \mathrm{~g}, 0.47 \mathrm{mmol})$, sodium hydrogen 3 -sulfobenzoate ($0.129 \mathrm{~g}, 0.58 \mathrm{mmol}$) and $2,2^{\prime}$-bipyridine $(0.070 \mathrm{~g}, 0.45)$ in an aqueous solution $(10 \mathrm{ml})$ was sealed in a 20 ml
stainless steel reactor with a Teflon liner, and heated at 423 K for 72 h . After being cooled to room temperature, the resulting mixture was kept in the closed reactor for 2 d ; green prismatic crystals of (I) were then separated by suction filtration.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot-$
$\quad \mathrm{H}_{2} \mathrm{O}$
$M_{r}=455.92$
Monoclinic, $P 2_{1} / n$
$a=9.5843(5) \AA$
$b=17.8784(9) \AA$
$c=10.6912(6) \AA$
$\beta=93.094(1)^{\circ}$
$V=1829.29(17) \AA^{3}$
$Z=4$
$D_{x}=1.655 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4969 reflections
$\theta=2.2-27.7^{\circ}$
$\mu=1.35 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, green
$0.39 \times 0.27 \times 0.19 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\text {min }}=0.621, T_{\text {max }}=0.783$
9836 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0469 P)^{2}\right. \\
& \quad+0.7756 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9606(16)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.0044(19)$
$\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$2.2877(17)$	$\mathrm{S} 1-\mathrm{O} 3$	$1.4434(19)$
$\mathrm{Cu} 1-\mathrm{O} 6$	$1.9582(17)$	$\mathrm{S} 1-\mathrm{O} 4$	$1.4409(19)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0027(19)$	$\mathrm{S} 1-\mathrm{O} 5$	$1.4543(17)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$92.39(6)$	$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{N} 1$	$164.95(8)$
$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{O} 1$	$93.30(7)$	$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{N} 2$	$92.00(8)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$92.39(8)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$81.07(8)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$172.09(7)$	$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 3$	$113.90(13)$
$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$99.01(7)$	$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 5$	$113.14(11)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$94.66(7)$	$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 5$	$110.68(12)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$92.58(7)$		

Symmetry code: (i) $x-1, y, z$.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7-H7AㅇO3 3^{ii}	$0.86(3)$	$1.96(1)$	$2.795(3)$	$165(3)$
O7-H7B O^{i}	$0.87(2)$	$1.91(2)$	$2.714(3)$	$154(2)$
O6-H6A \cdots O2	$0.86(1)$	$1.66(1)$	$2.523(2)$	$174(3)$
O6-H6B $\cdots \mathrm{O} 7$	$0.84(3)$	$1.81(3)$	$2.620(3)$	$164(3)$

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+2,-y+2,-z+2$.

All aromatic H atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The water

H atoms were located in difference Fourier maps and were refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and fixed isotropic displacement parameters of $0.08 \AA^{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the National Natural Science Foundation of China (grant No. 50073019) and the Analytical and Measurement Fund of Zhejiang Province.

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02a) and SMART (Version 5.618). Bruker AXS Inc., Madison, Wisconsin, USA.
Chisholm, M. H. (2003). J. Chem. Soc. Dalton Trans. pp. 3821-3828.
Fan, S.-R., Xiao, H.-P., Zhang, L.-P. \& Zhu, L.-G. (2004). Acta Cryst. E60, m1833-m1835.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Li, L.-C., Liao, D.-Z., Jiang, Z.-H. \& Yan, S.-P. (2001). Polyhedron, 20, 681-684.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Figure 3
A view of the ladder-like hydrogen-bonded pattern in (I). H atoms and 2,2'-bipyridine ligands have been omitted for clarity. Hydrogen bonds are shown as dashed lines.

Sun, D. F., Cao, R., Liang, Y. C., Shi, Q., Su, W. P. \& Hong, M. C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335-2340.
Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. \& Kim, J. (2003). Nature (London), 423, 705-714.

Zhang, L.-P. \& Zhu, L.-G. (2005). Acta Cryst. E61, m860-m862.
Zhu, L.-G. \& Kitagawa, S. (2002). Inorg. Chem. Commun. 5, 358-360.
Zhu, L.-G., Xiao, H.-P. \& Lu, J.-Y. (2004). Inorg. Chem. Commun. 7, 94-96.

[^0]: (C) 2005 International Union of Crystallography

