ISSN 1600-5368

Xiao-He Miao,^a Hong-Ping Xiao^b and Long-Guan Zhu^a*

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ^bSchool of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.032 wR factor = 0.085 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[[aqua(2,2'-bipyridine)copper(II)]μ-3-sulfonatobenzoato] monohydrate]

In the title polymeric complex, $\{[Cu(C_7H_4O_5S)(C_{10}H_8N_2)-(H_2O)]\cdot H_2O\}_n$, each Cu atom is coordinated by a water molecule, two 3-sulfonatobenzoate ligands and two N atoms from one 2,2'-bipyridine molecule, in the shape of a square pyramid. The bridging 3-sulfonatobenzoate ligands extend the molecular structure into a one-dimensional chain. The coordinated water molecule forms an intramolecular hydrogen bond with the carboxyl group and an intermolecular hydrogen-bonding network between the sulfonate groups and the solvent water molecules of two polymer chains generates ring structures, which form an infinite ladder-like pattern extending along the *a* axis.

Comment

In recent years, numerous metal complexes with ditopic ligands, such as 1,4-benzenedicarboxylate (bdc) or 4,4'bipyridine, have been extensively investigated owing to their potential application as functional materials (Chisholm, 2003; Yaghi *et al.*, 2003; Zhu & Kitagawa, 2002). However, metal complexes with sulfobenzoate, a ligand with a combination of sulfonate and carboxylate groups, are sparse (Zhang & Zhu, 2005). In the related reaction system of 4-sulfobenzoate (4-sb), copper(II), 2,2'-bipyridine (2,2'-bipy) and water, a dimer structure is formed (Fan *et al.*, 2004). In the title complex, (I), using 3-sulfobenzoate (3-sb) instead of 4-sulfobenzoate, a polymeric species is formed.

In (I), each Cu^{II} atom adopts a square-pyramidal geometry defined by two N-atom donors from one 2,2'-bipyridine molecule, two O atoms from two 3-sb ligands and one O atom from a water molecule. Atoms O1, O6, N1, and N2 occupy the basal plane, while atom O5ⁱ [symmetry code: (i) -1 + x, y, z] occupies the apical position (Fig. 1 and Table 1). The coordination geometry of (I) is similar to that of the dimer [Cu(4-sb)-(2,2'-bipy)(H₂O)]₂, (II) (Fan *et al.*, 2004). The Cu–

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 24 October 2005 Accepted 3 November 2005 Online 10 November 2005

Figure 1

ORTEP-3 (Farrugia, 1997) view of a segment of (I). Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -1 + x, y, z.]

Figure 2

A view of the one-dimensional chain of (I). H atoms and solvent water molecules have been omitted for clarity. Hydrogen bonds are shown as dashed lines.

 $O(\text{carboxylate}), Cu-N \text{ and } Cu-O(SO_3^{-}) \text{ distances in (I) are}$ remarkably close to those in (II), and the Cu-O(carboxylate)and Cu-N distances in (I) are also similar to those in reported one-dimensional bdc/1,10-phen/Cu²⁺ complexes, such as [Cu(bdc)(phen)] (Sun et al., 2001), [Cu₂(bdc)(phen)₂(N₃)₂] (Li et al., 2001) and [Cu(bdc)(phen)(H₂O)](H₂O)(DMF) (Zhu et al., 2004). The 3-sb ligand in (I) acts as a bridge in the bismonodentate coordination mode and the Cu...Cu separation by the 3-sb ligand is 9.5843 (5) Å, which is slightly shorter than that of (II) [9.7495 (8) Å] and significantly shorter than those of reported one-dimensional bdc/1,10-phen/Cu²⁺ complexes (about 11.0 Å). The dihedral angle between the planes of the 3-sb ring and its carboxylate group is $12.1 (3)^\circ$, which is larger than that of (II) [4.0 (4) $^{\circ}$]. In (II), the two *cis*-arranged 4-sb ligands around the Cu atom are strictly parallel and lead to a cyclic dimer. However, in (I), the two 3-sb ligands around the copper centre are arranged in a trans fashion, and a onedimensional chain is formed (Fig. 2), including an intramolecular hydrogen bond between the coordinated water molecule and the uncoordinated carboxyl O atom. The solvent water molecule forms three hydrogen bonds with the coordinated water molecule and two sulfonate groups from two neighbouring chains, and thus the molecular structure is assembled into a ladder-like pattern (Fig. 3 and Table 2), in which the shortest $Cu \cdot Cu$ separation is 6.9967 (6) Å.

Experimental

A mixture of Cu(CH₃COO)₂·H₂O (0.093 g, 0.47 mmol), sodium hydrogen 3-sulfobenzoate (0.129 g, 0.58 mmol) and 2,2'-bipyridine (0.070 g, 0.45) in an aqueous solution (10 ml) was sealed in a 20 ml

Crystal data

 $[Cu(C_7H_4O_5S)(C_{10}H_8N_2)(H_2O)]$ -- H_2O $M_r = 455.92$ Monoclinic, $P2_1/n$ a = 9.5843 (5) Å $\mu = 1.35 \text{ mm}^{-1}$ b = 17.8784 (9) Å c = 10.6912 (6) Å $\beta = 93.094 \ (1)^{\circ}$ $V = 1829.29(17) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\min} = 0.621, T_{\max} = 0.783$ 9836 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ wR(F²) = 0.085 S = 1.053402 reflections 265 parameters H atoms treated by a mixture of independent and constrained refinement

 $0.39 \times 0.27 \times 0.19$ mm 3402 independent reflections 3069 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.020$ $\theta_{\rm max} = 25.5^{\circ}$ $h = -11 \rightarrow 11$

 $D_x = 1.655 \text{ Mg m}^{-3}$

Cell parameters from 4969

Mo $K\alpha$ radiation

reflections

 $\theta = 2.2 - 27.7^{\circ}$

T = 295 (2) K

 $k = -21 \rightarrow 11$

 $l = -12 \rightarrow 12$

Prism. green

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.9606 (16)	Cu1-N2	2.0044 (19)
Cu1-O5 ⁱ	2.2877 (17)	S1-O3	1.4434 (19)
Cu1-O6	1.9582 (17)	S1-O4	1.4409 (19)
Cu1-N1	2.0027 (19)	\$1-O5	1.4543 (17)
O1-Cu1-O5 ⁱ	92.39 (6)	O6-Cu1-N1	164.95 (8)
O6-Cu1-O1	93.30 (7)	O6-Cu1-N2	92.00 (8)
O1-Cu1-N1	92.39 (8)	N1-Cu1-N2	81.07 (8)
O1-Cu1-N2	172.09 (7)	O4-S1-O3	113.90 (13)
O6-Cu1-O5 ⁱ	99.01 (7)	O4-S1-O5	113.14 (11)
N1-Cu1-O5 ⁱ	94.66 (7)	O3-S1-O5	110.68 (12)
N2-Cu1-O5 ⁱ	92.58 (7)		

Symmetry code: (i) x - 1, y, z.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.86 (3)	1.96 (1)	2.795 (3)	165 (3)
0.87(2)	1.91 (2)	2.714 (3)	154 (2)
0.86 (1)	1.66 (1)	2.523 (2)	174 (3)
0.84 (3)	1.81 (3)	2.620 (3)	164 (3)
	<i>D</i> -H 0.86 (3) 0.87 (2) 0.86 (1) 0.84 (3)	$\begin{array}{c c} D-H & H \cdots A \\ \hline 0.86 (3) & 1.96 (1) \\ 0.87 (2) & 1.91 (2) \\ 0.86 (1) & 1.66 (1) \\ 0.84 (3) & 1.81 (3) \end{array}$	$D-H$ $H \cdots A$ $D \cdots A$ 0.86 (3) 1.96 (1) 2.795 (3) 0.87 (2) 1.91 (2) 2.714 (3) 0.86 (1) 1.66 (1) 2.523 (2) 0.84 (3) 1.81 (3) 2.620 (3)

Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, -y + 2, -z + 2.

All aromatic H atoms were positioned geometrically and refined as riding atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The water

H atoms were located in difference Fourier maps and were refined with a distance restraint of O-H = 0.85 (1) Å and fixed isotropic displacement parameters of 0.08 Å².

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We thank the National Natural Science Foundation of China (grant No. 50073019) and the Analytical and Measurement Fund of Zhejiang Province.

References

- Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02a) and SMART (Version 5.618). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chisholm, M. H. (2003). J. Chem. Soc. Dalton Trans. pp. 3821-3828.
- Fan, S.-R., Xiao, H.-P., Zhang, L.-P. & Zhu, L.-G. (2004). Acta Cryst. E60, m1833-m1835.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Li, L.-C., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2001). Polyhedron, 20, 681–684. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Figure 3

A view of the ladder-like hydrogen-bonded pattern in (I). H atoms and 2,2'-bipyridine ligands have been omitted for clarity. Hydrogen bonds are shown as dashed lines.

- Sun, D. F., Cao, R., Liang, Y. C., Shi, Q., Su, W. P. & Hong, M. C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335–2340.
- Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). *Nature (London)*, **423**, 705–714.
- Zhang, L.-P. & Zhu, L.-G. (2005). Acta Cryst. E61, m860-m862.
- Zhu, L.-G. & Kitagawa, S. (2002). Inorg. Chem. Commun. 5, 358-360.
- Zhu, L.-G., Xiao, H.-P. & Lu, J.-Y. (2004). Inorg. Chem. Commun. 7, 94-96.